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A CONTINUITY THEOREM AND SOME COUNTEREXAMPLES

FOR THE THEORY OF MAINTAINED SYSTEMSl

by

Douglas R. Miller 1§
Department of Statistics '
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Abstract. The reliability of maintained systems is considered.

A "confinuity theorem" is presented which states that the stochastic
behavior of a maintained system depends continuously on the stochastic
behavior of its components. Examples of maintained systems with IFR
component lifetimes and exponential repair times are presented for

which time until first system failure is not NBU.
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Several authors (1,2,4,9,12,13] consider coherent systems in which

some of the components are repairable. A general model is as follows

[2]: Component positions 1 through k are filled with repairable

components with lifetime distributions Fi and repair time distributions

Gi ,1i=1,2,...,k. Components k+1 through k+m are nonrepairable

with lifetime distributions Fi , 1 = k+l,...,k+m. Components function
independently of each other, continuing to function while other components

are being repaired. Barlow and Proschan (1976 ) show that the time until first
system failure (starting with all new components) is NBU when the repair times
are DFR and component lifetimes are exponential. They conjecture that

this is also true for IFR component lifetimes. The purpose of this paper

is to present counterexamples to this conjecture. Other examples will

also show that increased repair rates do not necessarily result in greater
system reliability or availability for repairable systems with IFR components. In
the course of verifying these examples a "continuity theorem” for coherent
maintained systems is presented, which in effect says that systems with

the same structure function and approximately equal component distributions

will have approximately the same system behavior.

1. Deterministic Examples ( l-out-of-2 systems ).

Consider a l-out-of-2 system with independent component lifetimes

and repair times. Following the notation of the introduction, let

F,(t) = I[al'”) (t)
Gl(t) =1 - exp(-klt)

(1.1)
F2(t) = l[a 'w)(t)

2
1 - exp(-kzt)

Gz(t)




Note that both Fl and Fz are IFR as defined for arbitrary distributions

by Barlow and Proschan( 1975), p. 54. At time O the system consists of

new components. Let H be the cdf of the time until first system failure, L.
reliability of the system for the period [0,t] is R(t) =1 - H(t) = H(t).

The system is NBU if H(s+t) f_g(t)ﬁks) for all s,t > 0. Availability

of the system, A(t), in [0,t] equals the amount of time which the system
functions during [0O,t]; it is a random variable. (P(A(t)=t) = H(t).)

We consider two special cases: the first is not NBU; in the second case the

reliability decreases for certain increases in repair rate.

i) Let the constants in eguation (1.1) be:
a, = 10 A, =1 a, =9 A, = 0.1 (1.2)

Let Rl (Rz) be the first repair time of the first (second) component,

then
P(L>11) = P(R,€1) = 1- exp(-kz) = .095
and
P(L>22|L>11) > P(2<R <8 R,<1)
= P(2<R <8)
= exp(-ZXI) - exp(-ekl)
= ,135
Thus

P(L>22 | L>11) = H(22)/H(11) > H(1l)

and the system is not NBU.

ii) Let the constants in equation (l1.1) be:

a = 2 kl = variable a, = 4 Az = 0.1 (1.3)

Again letting L equal the time until first system failure and R1 (Rz)

equal the first

The




repair time for the first (second) component, then the event { L > 5 }

is equivalent to the event {liRliz}U{Of_Rl<l,0_<_R2_<_Rl }.

Using the independence of R and R2 gives

1

-1
PLE>S5 ) = 1 = exp(-2kl) - Al(A1+X2) (l—exp(-kl-kz))

If lz = 0.1 then the following table gives P( L > 5 ) f£or various

values of Xlz

Al 0.5 0.6 0.7 0.8 0.9 1.0

P(L > 5 ) .256 .267 .272 .271 .266 .258

Thus increasing Al does not necessarily increase (stochastically) the
time until first system failure. Nor does it necessarily increase

availability because P( A(5) =5 ) =P(L >5 ).

2. A Continuity Theorem for Maintained Systems.

The examples in the previous sections are quite special: their
components have deterministic lifetimes. We desire examples with random
lifetimes which are IFR; in particular, it would be nice to find an
example with absolutely continuous lifetime distributions and furthermore
with bounded failure rates. To verify the existence of such examples
the following theorem is useful.

Continuity Theorem 2.1. A coherent system ZO consists of k repairable

components and m nonrepairable components with component lifetime

distributions FO i i=1,2,...,k+m, and component repair time distributions
’

Go,i , i=1,2,...,k, such that Foli(0)=0 and GO,i(0)=0' At time O

all components are new. Let L0 be the time until first system failure

and Ao(t) be the system availability in [O0,t]. Suppose that the system




=4

Zn has the same structure function as Zo with component lifetime and

repair distributions F_ . , i=1,2,...,k+m, and G . , i=1,2,...,k.
n,1 n,1

as n-+® for all 1i. Let

F R¢
Suppose that - i GO,1

: F.. and G
'l 011 n
A_(t) equal the system availability in [0,t] of I . Then A (t) R
Ao(t) as n-~>®, Let Ln be the time until first system failure of Zn.
If different components of Zo have simultaneous state-transitions with
probability 0, then Ln : L as n-=*ew, " R signifies convergence

0

in distribution.

Proof: For integers n20, 1<i<k , j21, let QIJ1 i be independent
’

lifetimes with cdf Fn i and Ri i independent component repair times
’ ’

with cdf G .. Define
0,1
2/ £ j 3 2241 24 2+1
T . = I (o i N A S R s el TN g
n,i o1 n,i n,i n,i n,i n,i

/=0,1,2,... . For each i,n, {Tg,i’ y=0,1,2,...} is an alternating

renewal process. Letting n-+® , the finite dimensional distributions of
these sequences converge to those of {Tg,i’ 5=0,1,2,...) , for each i=

1,2,...,k, because the summands converge in distribution. The £f.d.d.'s

are convergence-determining for the product topology on ﬁw (31, p.19)

thus

3

j= = 3 j=
{Tn i 3%0,3,3500:1 w {To'i, §=0,1,2,...}

in the product topology as n-—+® for 1i=1,2,...,k. It folliows from renewal

theory that these processes have paths almost surely in

oo
s = {uyt ) eR: O=¢t st <t_.S..., umtjcw}-

b S Sy Jace

= G
In addition, because Fo,i(O) 0 and O,i(o)==0' To i has paths almost

surely in




o
foie R s Bme b ek <.,  limE. =0} .
o s M 30

§ = {(to,t

0 ik

Lo o]
Let T denote the product topology on R and also its relativization

to S. Let un i denote the measures induced on (S,0(m)) by Tn i
’ ’

Now consider another representation of the above alternating renewal

process: for integers n20 and 1<ic<k, define

£ T2k. < k% T2k+:1
n,i n,i
xn,i(t) =,

! +

lo, T2k.l < < T2k+2

L n,i n,i

. : .th : e
k=0,1,2,... . Thus if the i component of Zn is functioning at time t,
X . (t)=1; if it is under repair, X . (t)=0. The processes X . are
n,i n,1 n,1
called "operating processes." Because lim TJ ., =% a,s., X . will be
J-o0 n,1i n,1

random functions in D[0,®), a.s. In particular, let B[0,®) & D[0,®) be

the binary O0-1 functions, then X i takes values in B[0,®)., Endow
’

B[0,») with a topology for which convergence is defined as follows:
xn+x if there exists a sequence of continuous one-to-one mappings Xn
of the interval [0,®) onto itself such that xn=Xoln and for each M>0

lim ogggM Ikn(t)-tl = 0. This topology is the relativization to
B[0,») of Skorohod's J1 topology defined by Stone (1963) on D[0,®);
cf. whitt (1971, 1972) and Lindvall (1973). Let Vn i be the measures

induced on (B[0O,®), o(Jl)) by the processes xn i
’
Let f£f:(s,m)>(B[0,®), Jl) be defined as follows: f(s)=x, where

- “ee = i < i =
s (to,tl, ) and x(t)=1 |if t2k$t t2k+l and O otherwise, k=0,1,2,...

It can be shown that £ 1is continuous on So. (The function £ maps con-

: : @
vergent sequences into convergent sequences. Since (R ,T) is metrizable,

this implies continuity of f; see (5], X.6.3, IX.5.5). Furthermore,




=} bl
= i => . and 2
un,i £, Since un,i u0,1 - u0,1

vn,i

2L -
mapping theorem ([3], p. 29) that vn i = vo’i, cf. wWhitt (1973).

’

Now consider "operating processes" associated with the nonrepairable
components of the system: For integers n20 and i=k+l, k+2, ... , k+m

let Qn i be independent lifetimes with cdf's Fn = Define
’ ’

L Lk Qn i
’

X .(t)
0 taQ .
L} - ]‘

Let V i i=k+l, k+2, ... , k+tm, Dbe the measures induced on
n,

(B[O,»),0(J,)) by these processes. As above it can be shown that

J
e
Vn,i Vg1
Now consider the process gn(t) = (xn,l(t)' e xn,k+m(t))' tzO(
+
on the product space (Bk+m[0,w), Jt m) of k+m copies of (B[O,®), Jl).

It follows from the fact that individual components behave independently

of one another and consequently from properties of product measures

D ; k+m
([3], p. 20) that §n §0 in the Jl topology.

Now consider the coherent structure of the systems 20 and Zn.

The state of the system is described by a binary k+m dimensional vec-

tor, for example, x = (1, 1, 0, 1, 0, ...). Let Dc:{o,l}k+m be

the set of states for which the system is "down". Let U = D¢ be the

set of states for which the system is "up".

Define the real-valued function At on Bk+m[0,M):
t

A (x(-)) = 1, (x(s))ds.

0

t
=I [ 1 (x(s))as
uevu il

In (0,t+l] there exist a finite number of transitions; suppose x has n
= x

k+m
. J
transitions  in this interval. If x_ 1, x then, given €30, no tran-

(SO)= 1, it follows by the continuous




sition-times of X in [0,t+l]) are perturbed by more than € from
those of x for sufficiently large n. This means that each visit to
u can be shortened or lengthened by at most 2€, and since there can be

at most nx visits to u it follows that

t t
| [ 1,(x(s))ds - [o 1 0%, (s))ds | < 2en

for sufficiently large n. Because € is arbitrary it follows that

t t
lim [ 1,x (s)ds = [ 1 (x(s))ds.
0 0

Thus At is continuous everywhere.

- 4 2 k+m
pDefine the real-valuea function L on B [0,®):

L(x(+)) = inf{t:x(t) e D}.

= min inf {t:x(t) = 4}
deD =

= min L )Y
min Ly (x(-))

We shall show that, for all 4, L

3 1s continuous at all points x(*)

which have no simultaneous state-transitions by two components. Let x

be such a point. Suppose Ld(z(-)) = t;' Each component can have only

finitely many state-~transitions in [O, tx+l] and since no simultaneous

transitions occur there must be a mimimum distance, &§>0, between two
Jk+m
transitions. Now suppose §n 1_, x, then by definition there exist

An,i’ i=1, 2, ..., k+m and Ne such that xn,i % ® xn,i and for

nzN_, Ikn i(s) - s] <e€<68/2 for0<s < £+ §/2. Since the transitions
’

of x are more than a distance & apart, it follows that the transitions
in (O, tx) must be the same for x and En' nzNe; the times of the

transitions may be slightly shifted but the sequence of transitions will

be identical. Thus X will first reach 4 in the interval [tx-s,




t +€] and thus lLd(fn) - Ld(§)| < g, for n2N_. Thus Ly is continuous

at x. This also implies L is continuous at X, a path with no simul-
taneous transitions. If ZO is the operating process of ZO then L is

: : . k+m
continuous a.s. relative to the measure induced by 50 on B [0,%),
providing that no simultaneous transitions occur.

Invoking the continuity theorem of the theory of weak convergence

([3], Theorem 5.1) gives, as n’»,

D D i i
Ln = L(§n( VDI L(§0( )) = L,
and
D . D 5 D
An(t) = At(gn( 1) At(ﬁo( )) = Ao(t)
where " D signifies equivalent probability laws (or distributions).

This completes the proof of the Continuity Theorem 2.1.

It is possible to extend Theorem 2.1 to systems with instantaneous

failures (Fo i(0)> 0) as follows: For integers n2=20, 1<ic<k, define
’

£og% (B =B L@RIrcEoE, o))
* m . l *l

= 3= - Jj
n,i jian,i(o) L L

e
where G - is the j-fold convolution. A system with lifetime and repairtime

* *
cdf's Fn i and Gn i will have the same distributions of time until first

’ .

system failure and system availability as a system with cdf's F_ . and

n,1
& .. W P .5 196

5,4 4 Fo,i i Gn,' v and Fn (O = F._ . (0) as n=>o,

0,i et Oy

* Q * * R *
then Fn,i Fo,i and Gn : GO . and Theorem 2.1 is applicable.

o1 o1
Barlow and Proschan(1975), chapter 7, describe some other models for
maintained systems for which analogous continuity theorems should hold.
Other continuity theorems may be found in [6,7,8,10,15,17,19,20] and

the references contained therein. The processes Zﬂ ,n>0, in the proof

of Theorem 2.1 are actually generalized semi-Markov processes; thus Theorem




2.1 is contained as a special case of continuity theorems proved by Whitt
(1976) and Hordijk and Schassberger (1976). However the proof of 2.1 is
much simpler than that required for the general processes treated in these

papers.

3. Examples with absolutely continuous distributions which have

bounded failure rates.

The examples in section 1 were pathological in the sense of having
degenerate distributions. 1In this section the existence of less pathological
examples is verified using the continuity theorem (Theorem 2.1). In particular,
the degenerate distributions in the preceding examples are replaced
by distributions which are absolutely continuous and furthermore
whose failure rates are bounded away from O and ®. This will be
accomplished by approximating the degenerate distributions by smooth
ones.

Lemma 3.1. Let Fo(t) =1 (t). Define the continuous polygonal

[a,®)

failure rate functions ra n(t),
’

=1 =
nly t < a-n -
7 -1 -1
r (t) = linear, a-n <t < a+n
a,n —
n, atn™t < ¢

Let F_(t) =1 - exp( -Jt r (s)ds ). Then F R F_ , as n¥o,
n 0 a,n 0

Proof: Follows immediately from definitions.

Now we reconsider example {i) of section 1. Let Zo be a l-out-of-2
system with distributions given by (1.1) and (1.2). Let Zn be a

l-out-of-2 system: component #1 has failure rate function r, n(-)
1'

and component #2 has failure rate function e n(-) (as defined
2'
in Lemma 3.1). Let the repair distributions of Zn be identical to

. . ——— ”.m’ » .-‘_’ '~' “ aidenses




-10-

those of ZO. Then the Continuity Theorem 2.1 and Lemma 3.1 imply
Ln 2 L0 , as n > o

It is easy to see that FL is continuous at t = 11 and 22.

(0}
Thus lim FL (t) = FL (t) for t = 11, 22. This, plus the fact that
n 0
FL (22) > [?L (11)]2, implies that there exists an N such that for
0 0
n >N, FL (22) > [FL (ll)]z. Thus there exists a l-out-of-2 systemn,
n n

XN , whose component lifetimes are IFR (with rate bounded away from
0 and») and exponential repair times such that system lifetime is not
NBU.

In light of this example for bounded failure rates, there may
not exist any useful general restrictions on component lifetime
distributions which guarentee NBU system lifetime, except the assumption
of Barlow and Proschan( 1976 ) of exponential lifetime distributions.

A similar analysis based on example (ii) of section 1 verifies
the existence of a similar l-out-of-2 system with nondegenerate IFR

component lifetimes and exponential repair times for which increased

repair rates lead to lower system reliability and availability.

Acknowledgement. I am grateful to the referee for pointing out some

mistakes in an earlier version of this paper and for providing some of

the references to other continuity theorems.
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